As children we believed in magic, imagined superpowers and a fantasy
where robots would one day follow our commands, undertaking our most meager
tasks and even help with our homework at the push of a button! But sadly it
always seemed that these beliefs, along with the idea of self-driven aero cars
and jetpacks, belonged in a future beyond our imagination or in a Hollywood
Sci-fi. Would we ever get to experience the future in our lifetime?
But then it arrived! Artificial Intelligence, aka AI, made its debut in
real life and became the buzz word of the 21st century,
providing us with new ideas to explore and incredible possibilities. And just
as we were getting used to AI we were introduced to Futuristic Learning, Deep
Learning, NLP and another term we often confuse with AI: Machine Learning (ML).
Whew!
Suddenly the future is well and truly here, and it’s hard to keep up
with the advancement of these technologies, what each term means and how they
relate to one another – particularly when it comes to AI and ML, which are
often perceived as interchangeable.
But while AL and ML fall into the same domain, they are significantly
different – with each having a specific application and outcome. And as more
and more businesses start to question whether these tools may benefit them, we
thought it was time to get to the bottom of what makes them different.
It all begins with AI.
According to John McCarthy, one of the Godfathers of AI, “AI is the
science and engineering of making intelligent machines”. We first saw AI in practice mid last century with the Turing
Test – a chess experiment designed by mathematician Alan Turing that became the
first time a computer defied human intelligence by defeating a human player in
the game.
When looking at how ML fits in with AI, AI is the super set while ML is
its subset. The latter is more dominantly used in areas with huge data sets
encompassing the ‘3 Vs’ of Big Data: Volume, Velocity and Variety. AI, on the
other hand, covers not only ML but also other branches including Natural
Language Processing, Deep Learning, Computer Vision and Speech Recognition.
Nevertheless, both AI and ML have one common goal: to achieve intelligence on a
scale that defeats natural human intelligence.
Everything that has a smart system and is taking decisions based on
inputted data can be considered an AI-driven machine – be it a car, door lock
or even a refrigerator. AI can consist of everything from Good Old-Fashioned AI
(GOFAI) all the way up to newer and advanced technologies like Deep Learning.
Whenever a machine can “intelligently” complete a set of tasks based on some
algorithms without human intervention, it is termed as artificial intelligence
– for example identifying a series of steps to win a game or answer a generic
question set by itself. AI machines are generally classified into three groups:
Narrow, General and Super:
1. Artificial Narrow
Intelligence or Weak AI is every intelligent task by machines that is
programmed to do a single task, such as game of chess or even Siri, Google
Assistant and other NLP processing tools.
2. Artificial General
Intelligence or Strong AI are machines that mimic human intelligence to its
core, making decisions and performing intellectual tasks that are driven by
sentiments, emotions and general awareness of the environment.
3. Artificial Super
Intelligence outdoes human intelligence in abstraction, creativity and wisdom.
This is what Elon Musk and similar people are fearful of for controlling the
world.
This brings us to the fact that we need more computing resources to
handle the corpus of data which unfortunately is limited. Therefore, we need to
work through a rule-based programming – hence the shift away from AI towards
ML.
The rise of the machines.
A subset of AI, ML refers to machines that learn on account of some sort
of prior knowledge – hence making them smarter and more likely to give results
close to human intelligence. ML systems train a machine how to learn and apply
decision making when encountered with new situations and are designed to get
smarter over time. What started as AI is now leading major devices to adopt ML
due to its likelihood to yield better results, and with the emergence of Big
Data ML has gained speed and is now utilized by some of the world’s most
powerful tech companies including Google, IBM, Baidu, Microsoft and Apple.
Tom M. Mitchell, a Computer Scientist and machine learning pioneer, has
defined ML as: “The study of computer algorithms that
allow computer programs to automatically improve through experience.” It focuses on
making a machine or computer “learn” by providing it with a set of data and
some predictions. Data is the fuel for machine learning and is to ML what code
is to traditional computing.
Training a ML model requires giving algorithms a chunk of Big Data and
one of the many learning models in order to extract processed, meaningful
information – thus automating the process. It works for specific domains where
we are creating models to detect or separate items, for example one fruit from
a given set of fruits. Another example of its use is in manufacturing, whereby
if you give input to a ML program with a large dataset of pictures of defects,
along with their description, it should have the capacity to automize the data
analysis of pictures at a later point in time. The model can find similar patterns
in pictures with indicators as to where the defect might be by analysing the
diverse dataset.
ML can be divided into three types: Supervised, Unsupervised and
Reinforcement Learning.
1. Supervised Learning
finds the relationship between the predicted output and input so that we can
predict outputs for newer inputs based on our previous datasets. An example
would be predicting the time when customers usually buy from an online store.
2. Unsupervised
Learning has no label on the output or the data, meaning you’re unclear of the
output of the model – it may be a wild guess. For example, a robot that serves
as a housekeeper is trained to clean dust anywhere it finds it. It finds dust
under the sofa more often than in other places, and thus trains itself to clean
under it confidently.
3. Reinforcement
Learning takes a similar approach as its name and inputs the results as a
training model back into the system to improve it. Taking the same robot
housekeeper example, the robot takes dust under the sofa as its input to
improve the system.
Final thoughts.
Today we see AI applied to many areas of our daily lives – but it’s not
as obvious to ‘see’ ML. How often do you access Google Home, Siri or Alexa?
These are AI interactions between humans and machines – but it’s what’s behind
these interactions that’s really interesting! They’re powered by training
models and prediction systems of ML used by Netflix, YouTube, Facebook and
Amazon.
ML has certainly been seized by marketers due to the opportunities
afforded from being able to understand audiences at a micro level – but it’s
also a term misused more than it should be, with the assumption that every AI
system is also ML. If you compare AI and ML, you can clearly arrive at the
conclusion that everything that uses human intelligence as a tool to mimic
intelligent behaviors by machines can be termed as AI. But for that operation
to be a ML tool too, one needs to use modeling techniques and a Big Data set to
apply these techniques to.
By understanding the key differences between AI and ML and the different
opportunities each provides, businesses will have a better understanding of how
– if at all – these tools can be applied in their operations
This article originally appeared on Makeen Technologies.
Great blog, thanks for sharing
ReplyDeleteGreat blog, thanks for sharing
ReplyDeleteVisit @ https://www.picknhook.com/#/products?menuId=146